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planes are brought closer together. The coupling factor, as shown in
Fig. 7, is determined from:

K(ky)  E(K)

L K(ks) K(ka)
CdB = -20 10g10 I&—(ké) I{(]\;"l) (11)
K(ks) ~ K(ks)

The coupling is shown to increase as the shielding ground planes are
moved away from the coupled lines.

IlI. CONCLUSION

Two new monolithic multilayer coupling structures have been
presented and their design characteristics have been derived using
direct analytical formulas. These closed form expressions have been
used to investigate the variations in structure mode impedances and
coupling coefficients. The placing of coupled lines, perpendicular to
their ground plane(s), provides an improved alternative to coplanar
edged coupled lines, where conductor edge current crowding needs
to be minimized.
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Rigorous Analysis of Iris Coupling Problem in Waveguide

Rong Yang and A. S. Omar

Abstract—1In this short paper we present a new class of simple basis
functions which explicitly take the edge conditions into consideration
for solving waveguide iris coupling problem by using moment method.
The good agreement between the results for some special cases for both
parallel-plate waveguide and rectangular waveguide from the present
work and that from previous publications demonstrate the correctness
of the choice of the basis functions. Compared with previously published
basis functions the basis functions introduced here are characterized by
their simple form, generality and still with a similar fast convergence
behavior.

1. INTRODUCTION

Waveguide iris coupling mechanism is frequently employed in
building microwave components such as waveguide filters and
impedance matching systems. Various analysis approaches like
Conformal Mapping, Variational Technique, Singular Integration
Equation Method, Mode Matching Method and Moment Method have
been developed in the past decades with success in dealing with such
problems.

The core of the moment method for solving waveguide iris
coupling problem lies in a suitable choice of a set of basis functions
to represent the tangential electric field behavior in the plane of the
coupling iris. A proper choice of such basis functions can drastically
reduce the computation efforts with a faster convergence of the
results. It has been shown in [1] and [2] that a set of basis functions
which account for the edge condition of the coupling aperture can be
of such an effect. But their choices of basis functions are complicated
and not straightforward. In this paper we present a new class of
simple-form basis functions which explicitly take the edge conditions
of the coupling iris into consideration. Compared with the previous
choices of basis functions the present one is free from complexity
and more universal but with similar fast convergence behavior.

II. GBNERAL THEORY AND CHOICE OF BASIS FUNCTION

The moment method is a successful one in solving iris coupling
problem and a detail description of the method can be found in [4].
Only a very brief introduction of the method will be made in this
short paper for the sake of brevity.

The transverse electromagnetic field in the waveguides at both
sides of the coupling iris are expanded in terms of the corresponding
waveguide eigen modes. The electric field of the coupling aperture
is expanded with respect to a set of suitable basis functions. The
equality of the tangential electric fields at the two sides of the iris to
the aperture field as well as the continuity of the tangential magnetic
fields across the iris along with the application of Galerkin’s method
leads to an infinite set of algebraic equations relating the incident
and reflected modal amplitades in both waveguides, from which a
description of the coupling structure in terms of e.g. the S parameter
can be derived. A truncation of the above infinite system of equation
must be made before a numerical evaluation is to be carried out.

Assuming that the coupling iris is of zero thickness the basis
functions which are supposed to account for the singular behavior
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Fig. 1. Infinitively extended parallel-plate with a capacitive semi-diaphragm.

at the edge must satisfy the 0° corner edge conditions. If * = xo
denotes an edge, the basis function denoting the aperture electric field
component normal to the edge can be chosen to be of the form

cos[jm(x — z0)/d]
V(z = o) 7

while those for the aperture electric field component parallel to the
edge are

(.]=0~1a2w)

sin [jw(x — x0)/d]
V(@ — o) ’

which guarantee the satisfaction of the field edge properties.

(.} = 112737"')

III. NUMERICAL RESULTS

For the numerical evaluation we choose the waveguide at both sides
of the iris to be rectangular with the same dimensions and without
offset. Both waveguides are assumed to be lossless.

We consider first the structure of a parallel-plate waveguide of
infinite extent with a capacitive semi-diaphragm as shown in Fig.
1. A TEM-mode of unit amplitude is assumed to be incident from
the left-hand side of the waveguide. Since the discontinuity of the
coupling iris is confined in the y-direction, the excited higher order
modes in the iris plane due to an z-independent incident wave are
also r-independent. The following basis functions can be chosen to
represent the aperture transverse electrical field:

cos [in(y — yo)/d]
(v —yo)(y+wo)

ey = (i=0,1,2,--+)

where y = yo is the iris edge. It can be demonstrated that an
introduction of an image edge at y = —yp will not change the
characteristics of the coupling structure while it can remarkably
reduce the numerical computation efforts.

Table I shows the calculated normalized susceptance as a function
of the number of basis functions for such a capacitive semi-diaphragm
in parallel-plate waveguide together with the results from [2] and [3].
The present numerical results compare very well to the exact solution
in [5] with B = j 1.5931. It is noted that the convergence effect of
the here introduced basis functions is similar to that of [2] and [3] and
only two to three of such basis functions are sufficient to produce an
accurate result. However the convergence pattern of the present basis
functions is different from that in the literature mentioned above.
Both of the results in [2] and [3] approach the exact value from
above while the present one approaches it from below. This can be
clearly seen in the table.

Next a symmetrical capacitive obstacle in a rectangular waveguide
is considered as shown in Fig. 2. For this structure the metal strip in
the waveguide forms two coupling apertures separated by the strip.
According to the geometry of the structure, when a TE;¢ dominant

TABLE 1

SUSCEPTANCE OF A CAPACITANCE SEMI -DIAPHRAGM AS A FUNCTION OF THE

NUMBER OF Basis FUNCTIONS - - -, PARAMETER: A = 2.5b,d = 0.5b
J 0 1 2 3 4
present 1.5844 1.5930 1.5931 1.5931 1.5931
result
Leong 1.5935 1.5934 1.5931 1.5931 1.5931
et al [2]
Lyapin 1.6123 1.5932 1.5931 1.5931 1.5931
et al [3]

mode is incident from the left side only TE;, and TM;,, modes can
be excited at the iris plane. For the lower aperture we choose the
basis function of the form

sin [j7(y1 — y)/d]

.= ). =123
¢z = cos(rz/a (v — )y +y)
_ ( ’ cos[jm{yr —y)/ . (j -0,1,2,---
ey, = sin(7wz/a TEDITED) J )
while for the upper aperture:
ez = cos (7 /a)
_ sin [jm(y — y2)/d] (j=1.2.3,-4)
(y—y2)y +y2)
ey = sin(wz/a)
cos[jm(y — y2)/d] (j=0,1,2,--)

V=) +192)

j=201223, -

The normalized shunt susceptance of a symmetrical capacitive strip
in a rectangular waveguide as a function of the strip width is shown
in Fig. 2. Three different curves for different values b/)\, are plotted.
The numerical results obtained here agree well with the results from
Marcuvitz’s Waveguide Handbook [1] within the plotting accuracy.
A total number of 40 modes (both TE and TM) are used in the
calculation. Similar to that for the case of parallel-plate waveguide
two or three of the above basis functions for each aperture are enough
to yield a quite accurate result.

Due to their simple form the suggested basis functions are
very suitable to deal with more complicated coupling structures
such as resonant iris with rectangular aperture(s). A metal
diaphragm with a rectangular opening in a rectangular waveguide
exhibits a susceptance-frequency characteristics similar to that
of a parallel resonant circuit shunting the waveguide. For a
centered rectangular resonant window in a rectangular waveguide
the resonant frequency can be calculated with the empirical

equation
2
o f (A
b 1.97a

ai A 2
= —4/1 - ——
bl (1.97@1) (1)

The definition of the different parameters are shown in Fig. 3.
For a dominant mode incidence the higher order modes excited
in the iris plane are both TE and TM of any order due to the
inhomogeneity of the junction in both .- and y-directions. To
account for the aperture edge properties the following basis func-
tions are chosen to expand the transverse electric field at the iris
plane
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. Fig. 2. Normalized shunt susceptance of a symmetrical capacitive obstacle in a rectangular waveguide.
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Fig. 3. Resonance wavelength of centered rectangular window in rectangular window in rectangular waveguide as a function of window dimension.
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_ cos [in(x — xo)/a1]
\/(.17 — r0)[l — (x — wo)/a1]
" sinfjnly ~ wo)/bi]
\/@ —yo)[l = (y — Yo)/b1]
(i=0,1,2,--+; j =1.2.3,-+)
sin [im(z — xo)/a1]

T o)l - (x - %0)/aa]

- cos [jm(y — yo)/b1]
V= yo)[1 = (v — y0) /b1l
(1=1,2,3;j=0.1,2-")

The coordinates (xg.yo) correspond to the lower left corner of the
aperture.

Fig. 3 gives the calculated resonant frequency of a rectangular
resonant window in a rectangular waveguide as a function of the
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resonant window dimension together with the resonant frequency
calculated from (1). It can be noted that the results from the two
approaches coincides well with each other with a difference of about
one to two percent. Since a discrepancy of a few percent are expected
between the result from (1) and that of experiment [6], the results
obtained by the present numerical method can be considered to be
of good accuracy. Equation (1) is an empirical one which considers
only the effect of the dominant mode and it is not likely to give good
results when the operating frequency approaches the cutoff frequency
of the next higher order mode. This phenomenon can also be observed
in Fig. 3. For the curve a; /a = 0.7 when A/« approaches unity (the
cutoff wavelength of the TEyp mode) the difference between the two
curves becomes bigger. Here again, only two or three basis functions
are included in the computation.

In the course of the numerical calculation the most time consuming
procedure is the matrix inversion. The size of the matrix to be inverted
is determined by the number of the used basis function. Two or three
basis functions imply that the matrix to be inverted is of the order 2x 2
or 3 X 3. The numerical analysis with the suggested basis functions
is consequently very computationally time saving. The typical CPU
time required for one point calculation with as much as 1600 total
waveguide modes is about 20 seconds on a CONVEX computer.

IV. CONCLUSION

A new class of simple-form basis functions are presented for
solving waveguide iris coupling problem by using the moment
method. A study for different coupling structures using these basis
functions shows good agreement with the already published re-
sults. Compared with the basis functions published before the basis
functions introduced here are characterised by their simple forms,
generality and fast convergence which are consequently suitable for
analysing relatively complex coupling structures.
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Numerical Electromagnetic Inverse-Scattering
Solutions for Two-Dimensional Infinite Dielectric
Cylinders Buried in a Lossy Half-Space

S. Caorsi, G. L. Gragnani, and M. Pastorino

Abstract—An approach to microwave imaging in a half-space geometry
and for infinite dielectric cylinders buried in a lossy medium is proposed.
The two-dimensional integral-equation for the inverse-scattering problem
is discretized by the moment method. The resulting ill-conditioned system
is solved by pseudoinversion. A multi-incidence process based on the
invariance of the Green matrix to the incident field is described. Results of
some numerical simulations, assuming a noisy environments, are reported
and discussed.

I. INTRODUCTION

In this paper, a two-dimensional integral formulation of inverse
scattering in a half-space is proposed for microwave imaging of
buried objects. This technique is of great interest in many geophysical
and civil-engineering fields. Detection of cables and pipes (plastic
materials) is a significant example. In the past, some works dealt with
the problem of identifying nonmetallic structures by radar [1], [2], and
an interesting method for microwave imaging of buried objects was
proposed in [3]. Moreover, a diffraction tomography methodology
previously developed for medical applications, was proposed for
electromagnetic imaging of buried cylindrical inhomogeneities [4].

In the present paper, the theory of inverse scattering is applied to
solve the integral equation, whose unknown terms are the products
of the object functions by the total electric field. After considering
an equivalent current density to model the investigation domain, the
resulting integral equations are solved numerically by the moment
method (MoM) [5].

In the last few years, several moment-method-based inverse-
scattering solutions for many different situations have been pre-
sented. Ghodgaonkar et al. [6] developed a method for imaging
3-D biological targets; Ney et al. [7] used the pseudoinversion
transformation to retrieve the polarization current in mono- and
two-dimensional scatterers. Moreover, two works by Guo and Guo
[8], [9] furnished a theoretical background to develop reconstruction
algorithms. Finally, the authors of the present paper proposed an
approach to the reconstruction of unknown dielectric scatterers in free
space [10]. In this work, the possibility of determining the dielectric
properties of unknown objects buried in a half-space is explored.
Input data are obtained by measuring the values of the scattered
electric field inside an observation domain located near the boundary
between the different media. A TM-wave incident electric field is
used to illuminate the unknown objects. A multi-illumination-angle
imaging process is proposed. Since the Green matrix is invariant
to the incident electric field vector, this multi-illumination process
does not require an increase in computational resources. Another
interesting feature lies in the possibility of computing off line (and
once for all) the pseudoinverse matrix, after fixing the investigation
and observation domains.

Manuscript recerved March 2, 1992; revised May 28, 1992.

The authors are with the Department of Biophysical and Electronic Engi-
neering, University of Genoa, Via all'Opera Pia, 11A. 16145 Genoa, Italy.

IEEE Log Number 9204497,

0018-9480/93$03.00 © 1993 IEEE



